4) For the function f whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.

e)
$$f(3) =$$

5) For the function f whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.

a)
$$\lim_{x \to 1^-} f(x) =$$

b)
$$\lim_{x \to 1^+} f(x) =$$

c)
$$\lim_{x \to 1} f(x) =$$

$$d)_{x \to 5} \lim_{x \to 5} f(x) =$$

2

6) For the function g whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.

b)
$$\lim_{x \to -2^+} g(x) =$$

c)
$$\lim_{x \to -2} g(x) =$$

e)
$$\lim_{x\to 2^{-}} g(x) =$$

i)
$$\lim_{x \to a^+} g(x) =$$

k)
$$g(0) =$$

h)
$$g(2) =$$

$$j) \lim_{x \to 4^{-}} g(x) =$$

$$\lim_{x\to 0} g(x) =$$

7) For the function g whose graph is given, state the value of the given quantity, if it exists. If it does not exist, explain why.

c)
$$\lim_{t\to 0} g(t) =$$

d)
$$\lim_{t \to 2^{-}} g(t) =$$

e)
$$\lim_{t \to 2^+} g(t) =$$

f)
$$\lim_{t\to 2} g(t) =$$

g)
$$g(2) =$$

h)
$$\lim_{t \to 4} g(t) =$$

8) For the function *R* whose graph is shown, state the following:

a)
$$\lim_{x \to 2} R(x) =$$

b)
$$\lim_{x \to 5} R(x) =$$

c)
$$\lim_{x \to 3^{-}} R(x) =$$

$$d) \lim_{x \to 3^+} R(x) =$$

9) For the function R whose graph is shown, state the following:

- d) $\lim_{x \to 6^-} f(x) =$
- f) The equations of the vertical asymptotes.
- e) $\lim_{x\to 6^+} f(x) =$

10) A patient receives a 150-mg injection of a drug every 4 hours. The graph shows the amount f(t) of the drug in the bloodstream after t hours. Find

$$\lim_{t \to 12^{-}} f(t) \quad \text{and} \quad$$

$$\lim_{t\to 12^+} f(t)$$

and explain the significance of these one-sided limits.

11) Use the graph of the function $f(x) = \frac{1}{1 + 2^{\frac{1}{x}}}$

to state the value of each limit, if it exists. If it does not, explain why.

a)
$$\lim_{x\to 0^-} f(x) =$$

b)
$$\lim_{x \to 0^+} f(x) =$$

c)
$$\lim_{x\to 0} f(x) =$$